Maximum number of edges in claw-free graphs whose maximum degree and matching number are bounded

نویسندگان

  • Cemil Dibek
  • Tinaz Ekim
  • Pinar Heggernes
چکیده

We determine the maximum number of edges that a claw-free graph can have, when its maximum degree and matching number are bounded. This is a famous problem that has been studied on general graphs, and for which there is a tight bound. The graphs achieving this bound contain in most cases an induced copy of K1,3, the claw, which motivates studying the question on claw-free graphs. Note that on general graphs, if one of the mentioned parameters is not bounded, then there is no upper bound on the number of edges. We show that on clawfree graphs, bounding the matching number is sufficient for obtaining an upper bound on the number of edges. The same is not true for the degree, as a long path is claw-free. We give exact tight formulas for both when only the matching number is bounded and when both parameters are bounded. We also construct claw-free graphs whose edge numbers match the given bounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Total Domination and Matching Numbers in Claw-Free Graphs

A set M of edges of a graph G is a matching if no two edges in M are incident to the same vertex. The matching number of G is the maximum cardinality of a matching of G. A set S of vertices in G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number of G. If G does not contain K1,...

متن کامل

On matching and total domination in graphs

A set M of edges of a graph G is a matching if no two edges in M are incident to the same vertex. A set S of vertices in G is a total dominating set ofG if every vertex of G is adjacent to some vertex in S. The matching number is the maximum cardinality of a matching of G, while the total domination number of G is the minimum cardinality of a total dominating set of G. In this paper, we investi...

متن کامل

Eliminating Odd Cycles by Removing a Matching

We study the problem of determining whether a given graph G = (V,E) admits a matching M whose removal destroys all odd cycles of G (or equivalently whether G−M is bipartite). This problem is also equivalent to determine whether G admits a (1,1)-coloring, which is a 2-coloring of V (G) in which each color class induces a graph of maximum degree at most 1. We show that such a decision problem is ...

متن کامل

On reverse degree distance of unicyclic graphs

The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...

متن کامل

ON THE MATCHING NUMBER OF AN UNCERTAIN GRAPH

Uncertain graphs are employed to describe graph models with indeterministicinformation that produced by human beings. This paper aims to study themaximum matching problem in uncertain graphs.The number of edges of a maximum matching in a graph is called matching numberof the graph. Due to the existence of uncertain edges, the matching number of an uncertain graph is essentially an uncertain var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 340  شماره 

صفحات  -

تاریخ انتشار 2017